Use HypE to Hide Association Rules by Adding Items

نویسندگان

  • Peng Cheng
  • Chun-Wei Lin
  • Jeng-Shyang Pan
  • Manabu Sakakibara
چکیده

During business collaboration, partners may benefit through sharing data. People may use data mining tools to discover useful relationships from shared data. However, some relationships are sensitive to the data owners and they hope to conceal them before sharing. In this paper, we address this problem in forms of association rule hiding. A hiding method based on evolutionary multi-objective optimization (EMO) is proposed, which performs the hiding task by selectively inserting items into the database to decrease the confidence of sensitive rules below specified thresholds. The side effects generated during the hiding process are taken as optimization goals to be minimized. HypE, a recently proposed EMO algorithm, is utilized to identify promising transactions for modification to minimize side effects. Results on real datasets demonstrate that the proposed method can effectively perform sanitization with fewer damages to the non-sensitive knowledge in most cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing an algorithm for use to hide sensitive association rules through perturb technique

Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...

متن کامل

Hiding Sensitive Association Rules without Altering the Support of Sensitive Item(s)

Association rule mining is an important data-mining technique that finds interesting association among a large set of data items. Since it may disclose patterns and various kinds of sensitive knowledge that are difficult to find otherwise, it may pose a threat to the privacy of discovered confidential information. Such information is to be protected against unauthorized access. Many strategies ...

متن کامل

Association Rule Hiding Based on Evolutionary Multi-Objective Optimization by Removing Items

Today, people benefit from utilizing data mining technologies, such as association rule mining methods, to find valuable knowledge residing in a large amount of data. However, they also face the risk of exposing sensitive or confidential information, when data is shared among different organizations. Thus, a question arises: how can we prevent that sensitive knowledge is discovered, while ensur...

متن کامل

A New Approach to Sensitive Rule Hiding

Privacy preserving data mining is a novel research direction in data mining and statistical databases, which has recently been proposed in response to the concerns of preserving personal or sensible information derived from data mining algorithms. There have been two types of privacy proposed concerning data mining. The first type of privacy, called output privacy, is that the data is altered s...

متن کامل

Association Rule Hiding by Heuristic Approach to Reduce Side Effects & Hide Multiple R.H.S. Items

Association rule mining is a powerful model of data mining used for finding hidden patterns in large databases. One of the great challenges of data mining is to protect the confidentiality of sensitive patterns when releasing database to third parties. Association rule hiding algorithms sanitize database such that certain sensitive association rules cannot be discovered through association rule...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015